锂离子电池采用石墨等插层材料作为负极,由于插层间距不足,这些材料无法大量存储钠。因此,人们开始探索转化和合金化反应型材料,以满足负极部分的高容量需求。然而,与插入反应不同,在转化和合金化反应中,材料的体积膨胀通常较大,而且晶体会突然发生变化,进而破坏活性物质,导致容量严重退化。
研究团队发现,在转化反应中,对于实现耐粉碎转化反应和容量恢复,半共格相界面(semi-coherent phase interface)和晶界起到关键作用。硫化铜通过渐进性的晶体变化,生成半共格相界面,最终阻止颗粒的粉碎。基于这一独特的机理,研究人员证实,无论大小和形态如何,硫化铜都具有高容量和高循环稳定性。Yuk教授表示:“使用硫化铜,可以促进钠离子电池的发展,有助于开发低成本储能系统,并解决微尘问题。”